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De Novo Mutations in FOXP1
in Cases with Intellectual Disability,
Autism, and Language Impairment

Fadi F. Hamdan,1 Hussein Daoud,2 Daniel Rochefort,2 Amélie Piton,2 Julie Gauthier,2 Mathieu Langlois,3

Gila Foomani,4 Sylvia Dobrzeniecka,2 Marie-Odile Krebs,5 Ridha Joober,6 Ronald G. Lafrenière,2

Jean-Claude Lacaille,7 Laurent Mottron,8 Pierre Drapeau,9 Miriam H. Beauchamp,1,10

Michael S. Phillips,3 Eric Fombonne,4 Guy A. Rouleau,1,2,* and Jacques L. Michaud1,*

Heterozygous mutations in FOXP2, which encodes a forkhead transcription factor, have been shown to cause developmental verbal

dyspraxia and language impairment. FOXP2 and its closest homolog, FOXP1, are coexpressed in brain regions that are important for

language and cooperatively regulate developmental processes, raising the possibility that FOXP1may also be involved in developmental

conditions that are associated with language impairment. In order to explore this possibility, we searched for mutations in FOXP1 in

patients with intellectual disability (ID; mental retardation) and/or autism spectrum disorders (ASD). We first performed array-based

genomic hybridization on sporadic nonsyndromic ID (NSID) (n¼ 30) or ASD (n¼ 80) cases. We identified a de novo intragenic deletion

encompassing exons 4–14 of FOXP1 in a patient with NSID and autistic features. In addition, sequencing of all coding exons of FOXP1 in

sporadic NSID (n ¼ 110) or ASD (n ¼ 135) cases, as well as in 570 controls, revealed the presence of a de novo nonsense mutation

(c.1573C>T [p.R525X]) in the conserved forkhead DNA-binding domain in a patient with NSID and autism. Luciferase reporter assays

showed that the p.R525X alteration disrupts the activity of the protein. Formal assessments revealed that both patients with de novo

mutations in FOXP1 also show severe language impairment, mood lability with physical aggressiveness, and specific obsessions and

compulsions. In conclusion, both FOXP1 and FOXP2 are associated with language impairment, but decrease of the former has

a more global impact on brain development than that of the latter.
Developmental language disorders represent a heteroge-

neous group of conditions that are frequent but poorly

understood. Although these disorders show high herita-

bility, very little is known about the causative genes.

FOXP2 (MIM 605317) represents an important entry point

into the molecular basis of developmental language disor-

ders.1,2 Patients heterozygous for mutations in FOXP2

show verbal dyspraxia (MIM 602081), which is character-

ized by impaired coordinated mouth movements that are

required for speech, as well as variable impairment of

expressive and receptive language, without consistent

nonverbal cognitive deficits. Recent studies suggest that

FOXP2 is also required for vocal learning in birds and

that it might have played a role during the evolution of

human language.3–5

FOXP2 belongs to a subgroup of the FOX family of

winged-helix/forkhead transcription factors, which also

includes FOXP1 (MIM 605515), FOXP3 (MIM 300292),

and FOXP4 (MIM 608924).6 Several observations suggest

that FOXP2 and its closest relative, FOXP1, may regulate

commonprocesses. For instance, FOXP1 and FOXP2 are ex-

pressed in distinct but also in overlapping regions of the

developing bird, mouse, and human brain, including areas
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associated with the production and processing of vocaliza-

tion and language.7–10 FOXP proteins act as transcriptional

repressors by forming homo- or heterodimers.9,11,12 Inter-

estingly, FOXP1 and FOXP2 can physically interact

in vitro, can repress the transcription of common targets

in vivo by occupying the same binding sites, and coopera-

tively regulate lung and esophageal development in

mice.11,13

Because FOXP1 and FOXP2 cooperate to control devel-

opmental processes, it was hypothesized that mutations

in FOXP1 could likewise be associated with language

impairment.10,14 However, sequencing of FOXP1 in

a cohort of individuals with developmental verbal dys-

praxia did not reveal any pathogenic mutations.14 Another

possibility is that FOXP1 disruption causes other develop-

mental conditions that are associated with language

impairment, such as intellectual disability (ID; mental

retardation) and autism spectrum disorders (ASD [MIM

209850]).15 In order to explore this possibility, we per-

formed mutation analyses of FOXP1 in patients with ID

and/or ASD. Because FOXP2 heterozygous mutations are

sufficient to disrupt language development, we decided,

likewise, to focus our attention on heterozygous
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d Cell Biology, and Le Groupe de Recherche sur le Système Nerveux Central,
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mutations, which in the case of ID are more likely to arise

de novo than to be transmitted. By analogy to the FOXP2

paradigm, we also restricted our analysis to patients

without specific morphological abnormalities (referred to

herein as having the nonsyndromic form of ID and ASD).

We studied sporadic cases with nonsyndromic ID

(NSID), ASD, or both NSID and ASD, most of which were

of French Canadian origin. We chose to study sporadic

cases to increase the likelihood of identifying de novo

mutations. The NSID cases were selected with the use of

previously described criteria.16 The sporadic ASD patients

were diagnosed according to DSM-IV criteria and were

selected on the basis of a positive Autism Diagnostic Inter-

view-Revised (ADI-R) and/or Autism Diagnostic Observa-

tion Schedule-Generic (ADOS-G). We used 570 healthy

individuals as controls, including 285 French Canadians

and 285 European individuals who were evaluated and

found not to have cognitive dysfunction, neuropsychiatric

symptoms, or family history of neuropsychiatric problems,

as detailed elsewhere.17 Blood samples were collected from

all members of these cohorts and from their parents, with

informed consent and after approval of the study by insti-

tutional ethics committees. Genomic DNA was extracted

from blood samples with the Puregene kit (Gentra). Pater-

nity and maternity of each NSID and ASD patient proband

trio were confirmed with the use of six informative micro-

satellite markers.

We initially determined whether FOXP1 is affected by

copy number changes in 80 individuals from the sporadic

ASD cohort (including 27 with documented ID), using

Genome-Wide Human Affymetrix 5.0 SNP arrays, and in

30 individuals from the sporadic NSID cohort, using Affy-

metrix 6.0 SNP arrays. Both parents of each case were also

studied with these arrays. We identified a de novo intra-

genic FOXP1 deletion in an NSID female patient

(R0031608) (patient A). This ~390 kb deletion (genomic

region on chromosome 3:71114875–71504640; hg18)

encompasses exons 4–14 of the longest isoform of FOXP1

(FOXP1a; Refseq no. NM_032682.4), including sequence

corresponding to its translation initiation site as well as to

leucine zipper and zinc finger domains that are important

for FOXP1 dimerization and regulation of transcriptional

activity (Figure 1A).11,13 Multiplex ligation-dependent

probe amplification (MLPA) analysis of FOXP1 in patient

A confirmed the loss of these exons (Figure 1B). No dele-

tions encompassing FOXP1 exons were identified in the

other tested patients or their parents, nor have any been re-

ported in the Database of Genomic Variants, a large public

repository of structural variations in population controls.18

We next sequenced all the coding exons and intron-

exon boundaries of the longest FOXP1 isoform (FOXP1a;

16 coding exons) in 110 cases with NSID, 84 cases with

ASD, and 51 cases with both NSID and ASD, as well as in

570 controls. We identified a de novo nonsense mutation,

c.1573C>T (p.R525X), in a male patient with NSID and

autism (R0024121) (patient B). This alteration abolishes

the last 152 amino acids of FOXP1, including part of the
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forkhead DNA-binding domain (FHD) and a conserved

nuclear localization signal (NLS) (Figure 2A).19,20 The

FHDs of other FOXP proteins share more than 90%

sequence identity with that of FOXP1 (Figure 2B).21 Alter-

ation of the corresponding arginine residue in FOXP3

(c.1189C>T [p.R397W]), as well as several other residues

in the FOXP3 FHD, has been reported to cause a lethal

X-linked neonatal autoimmune disease known as IPEX

(MIM 304790).22,23 Furthermore, high-resolution analysis

of the crystal structure of the human FOXP2 FHD revealed

that the residue homologous to p.R525, as well as residues

downstream of it, plays an important role in DNA

binding.21 Indeed, pathogenic alterations in FOXP2 that

abolish the FHD (p.R328X) or that are located in proximity

to the residue homologous to p.R525 (p.R553H) have been

shown to cause verbal dyspraxia (Figure 2B).24,25

Sequencing also revealed a heterozygous missense muta-

tion, c.643C>A (p.P215A), in both an NSID patient (n¼ 1/

110) and a healthy individual (n ¼ 1/570). In the case of

the NSID patient, the variant was transmitted from an

unaffected parent, further supporting the notion that it

is not pathogenic. This variant was also previously

reported in an individual with developmental verbal dys-

praxia and in a control sample.14 Three additional hetero-

zygous missense variants (c.1333G>A [p.V445M], n ¼ 1/

570; c.1838C>A [p.T613N], n ¼ 1/570; c.1709A>G

[p.N570S], n ¼ 2/570) were detected in FOXP1, but these

did not affect any known functional domains and were

present only in our cohort of controls, indicating that

they are not pathogenic. No other amino-acid-altering

variants were identified in any of the screened individuals,

including the 570 healthy controls.

In order to test the effect of the p.R525X mutation on

FOXP1 activity, we took advantage of the well-docu-

mented ability of FOXP1 to repress transcription from

the SV40 promoter, which can be easily monitored with

the use of a standard luciferase assay.9,20 The p.R525X

mutation was introduced into the full-length coding

sequence of the FOXP1 longest isoform (FOXP1a; obtained

from Kazusa DNA Research Institute, Japan) and subcloned

into the mammalian expression vector pcDNA4HisMax

(Invitrogen). Human embryonic kidney (HEK) 293 cells

were then cotransfected with the use of Fugene 6 (Roche)

in 24-well plates, with 400 ng of pcDNA4HisMax without

an insert or containing either the wild-type (WT) FOXP1 or

the FOXP1-R525X cDNA, along with 50 ng of pGL3-pro-

moter construct (Promega) (in which the SV40 promoter

drives a firefly luciferase reporter). In order to account for

variations in transfection efficiency and variation in cell

number, cells were also cotransfectedwith 50 ng of a Renilla

luciferase construct (pRL-TK; Promega) driven by the HSV-

thymidine kinase promoter, which is not affected by

FOXP1. Cells were lysed 48 hr after transfection and

quantified for firefly and Renilla luciferase activities with

the use of the Dual Luciferase Reporter Assay System

(Promega). As shown in Figure 2D, WT FOXP1 was found

to significantly inhibit the firefly luciferase signal (~50%
er 12, 2010



A

B

Figure 1. De Novo FOXP1 Deletion at 3p14.1 in Patient A
(A) The Affymetrix Genome-Wide Human SNP 6.0 Array result for patient A is shown above the ideogram of chromosome 3 (Netaffx
version 28). Each dot represents a SNP or a copy numbermarker, with normal copy number having a log2 ratio of ~0 and deleted regions
less than �1. The CNV analysis was performed according to the manufacturer’s procedure with the use of the Affymetrix reference
library, GenomeWideSNP_6.hapmap270.na30r1.a5, with a regional GC correction. The de novo deletion (chr3: 71109689–71508061;
hg18) is boxed, and the only gene affected with this deletion, FOXP1, is shown.
(B)Mapping of FOXP1 deleted exons in patient A. UsingMLPA analysis,35 wemapped the deletion breakpoints between exon 4 and exon
14 of FOXP1. MLPA probes targeting 14 exons (Ex) of FOXP1 were custom designed with the ProSeek software.36 These 14 probes were
compared to two control probes on chromosome X and chromosome 1. MLPA was performed on 50 ng of genomic DNA. Probe ampli-
fication products were run on an ABI 3730 DNA Analyzer (Applied Biosystems, Foster City, CA, USA). The data were analyzed with the
GeneMapper software version 4.0 (Applied Biosystems). The dosage ratio (DR) was calculated as follows: DR¼ (peak height FOXP1 / peak
height chromosome 1 probe) in the patient carrying the deletion / (peak height FOXP1 / peak height chromosome 1 probe) in her unaf-
fected mother, who has no copy number variation in FOXP1. The DR has a theoretical value of% 0.7 for a deletion, between 0.7 and 1.3
for a normal situation, andR 1.3 for a duplication. Values represent mean of samples5 standard deviation of samples run in triplicate.
Data show that exons 4–14 are deleted in patient A.
reduction; p < 0.001), as compared with an empty vector,

whereas FOXP1-R525X failed to induce any reduction in

luciferase levels, indicating that the p.R525X alteration

impaired the FOXP1 ability to repress the SV40 promoter.

Collectively, these results, along with the position of the
The American
p.R525X alteration in the FHD, strongly suggest that the

de novo p.R525X alteration disrupts FOXP1 function.

The mechanism(s) underlying this loss of FOXP1 activity

could involve altered nuclear localization, as suggested

by the disruption of one of the NLS in the FOXP1 mutant
Journal of Human Genetics 87, 671–678, November 12, 2010 673
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Figure 2. Localization and Characterization of FOXP1 De Novo Mutations
(A) Localization of the de novo mutations identified herein with respect to FOXP1 known protein domains (Uniprot no. Q9H334; 677
amino acids [aa]). The deletion in patient A is predicted to affect the first half of FOXP1, including important functional domains such as
a zinc finger (ZF; aa 306–331), a leucine zipper (LZ; aa 348–369), and CTBP1-binding (amino acids 382–386) domains. The nonsense
p.R525X alteration affects the conserved forkhead DNA-binding domain (FHD, aa 465–555). Also shown are two glutamine rich
(Q-rich) regions (aa 55–77, aa 110–194) at the N terminus of the protein and an acidic-rich region (aa 637–677) at its C terminus.
The positions of the two nuclear localization signals (NLS; aa 434–440, aa 543–546) are indicated.
(B). Alignment of the conserved FHD region of the four members of the human FOXP family. Highlighted and underlined in red are
residues that when mutated lead to human disease: p.R525X (current study) in NSID, autism, and language impairment; p.R553H in
FOXP2 in severe congenital speech disorder;24 and p.I363V, p.F371C/L, p.A384T, and p.R397T in FOXP3 in IPEX syndrome.21 Amino
acid identity and similarity are represented by asterisks (*) and dots (.), respectively.
(C) Chromatograms corresponding to the FOXP1 de novo mutation (c.1573C>T [p.R525X]) identified in patient B. Wild-type (WT) and
mutant (MT) FOXP1 DNA sequences are shown along with the corresponding amino acids.
(D) Luciferase reporter assay assessing the impact of p.R525X on FOXP1 transactivation activity in transfected HEK293 cells. FOXP1
significantly inhibited pGL3-promoter (SV40) transcriptional activity (p < 0.001) as compared to empty vector (pcDNA4)-transfected
cells only. In contrast, FOXP1-R525X failed to repress the pGL3-promoter activity. Results (mean 5 SEM of three independent experi-
ments, each performed in triplicate) are shown as relative firefly luciferase activity, which is driven by SV40 promoter, normalized with
Renilla luciferase, and driven by HSV-TK promoter activity. The control signal value (set to 100%) was obtained with cells transfected
with the empty expression vector (pcDNA4HisMax) and both pGL3-promoter (firefly luciferase) and pRL-TK (Renilla luciferase)
constructs.
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protein, impaired DNA binding, as suggested from the

crystal structure of the FOXP2 FHD, or a combination of

both. Although mutant and WT proteins were detected

at comparable levels in transfected HEK293 cells, we

cannot also exclude the possibility that the p.R525Xmuta-

tion induces nonsense-mediated decay of FOXP1mRNA in

the patient’s cells (Figure 2E). Additional work is needed to

address these mechanistic questions.

The phenotypes of both patients with de novo muta-

tions in FOXP1 are summarized in Table 1. Patients A

and B were born from nonconsanguineous French Cana-

dian parents after uneventful pregnancies and deliveries.

Patient B was operated on for atresia of the midjejunum

and midileum gut during the neonatal period. Their initial

development was characterized by global delay, with

severe language impairment. They started to walk between

the ages of 18 and 20 mo. Patient A was not clearly

pronouncing any word until 3 yrs of age and started to

associate words at 4 yrs of age, whereas patient B said his

first words at the age of 6 yrs. The patients exhibited no

deficits of oromotor coordination that could explain this

delay in learning to talk.

Patients A and B were assessed with the ADI-R and the

ADOS-G at 6 yrs 8 mo and at 2 yrs 7 mo, respectively.

Despite some autistic features in reciprocal social interac-

tion (social avoidance with peers and decreased inhibition

with adults) and restricted interests and repetitive behav-

iors (delayed echolalia and stereotyped language, self-

injury, perceptual fixations), patient A would not have

been considered as being autistic because of subthreshold

scores in the communication area. In contrast, patient B

showed scores above the diagnostic threshold for autism

in all areas.

Patients A and B were evaluated with a series of cognitive

and behavioral assessment tools at 15 and 9 yrs of age,

respectively. Assessment with the Leiter International

Performance Scale-R (Brief IQ), an estimate of nonverbal

intellectual functioning, revealed ID in the mild to

moderate range. Results from the Vineland Adaptive

Behavior Scale were consistent with the presence of ID in

both patients, showing severe deficits in adaptive behav-

iors across the range of subscales (communication, daily

living skills, socialization). Formal testing of patient A via

the Clinical Evaluation for Language Fundamentals

confirmed the presence of severe language impairment.

Specifically, expressive language was severely limited,

with oral communication characterized by single words

or very short, simple sentences. Expressive vocabulary,

equivalent to about 4.5 yrs, was slightly better than other

expressive skills, such as morphology and repetition of

increasingly complex sentences (both below 4 yrs) but

was nonetheless mostly limited to relatively simple,

frequent words. In several tests, she gave responses to
(E) Immunoblot performed on total protein extracts from HEK293 c
FOXP1 or FOXP1-R525X in frame with an N-terminal Xpress tag, a
FOXP1 and FOXP1-R525X were detected with the use of a monoclo
blot was stripped and probed with an anti-alpha-tubulin antibody (A

The American
expressive language items by miming the required words,

indicating good comprehension of the question but an

inability to produce the answer verbally. In support of

this, receptive language abilities were somewhat more

developed, as indicated by her understanding of a number

of more complex relational and numerical concepts.

Assessment of patient B with the Preschool Language Scale

also confirmed severe language impairment. In terms of

expressive communication, he scored at an age equiva-

lence of 1 yr 11 mo. He had a range of about 100 words

in his vocabulary and communicated with single words

or short sentences (two to three words). In contrast, he

was able to understand more complex relational concepts

and performed at an age equivalence of 3 yrs 7 mo in audi-

tory comprehension tasks.

Both patients also showed a particular behavioral profile.

Clinically significant problems were noted on the Vine-

land Maladaptive Behavior scale for patient A and were

characterized by both internalizing (e.g., social with-

drawal, anxiety) and externalizing (e.g., impulsivity,

mood lability, temper tantrums, sulking, disobedience,

physical aggression) behaviors. Parent responses on the

Aberrant Behavior Checklist also indicated the presence

of behavioral problems in both patients. In patient A, irri-

tability was rated as the most significant problem, with all

other problem scales (lethargy, stereotypy, hyperactivity,

inappropriate speech) reaching clinically significant levels.

Similarly, patient B had significantly elevated problems on

the irritability, stereotypy, and hyperactivity subscales and

clinically significant speech problems. A number of

specific obsessions and compulsions (e.g., looking in

mirrors, touching people’s hair, nail biting, removing sili-

cone in the house, hoarding objects) were described by

the parents and confirmed via the Repetitive Behavior

Scale. On this scale, ritualistic, restricted, and ‘‘sameness’’

behavior weremost often reported for patient A (e.g., meal-

time and bedtime rituals, rigid routines, listens to the same

music continuously, strong attachment to specific objects).

Stereotyped and self-injurious behavior (e.g., turning in

circles, spinning objects, hitting and biting self) were also

reported for patient B.

In summary, we report two patients with de novo delete-

rious intragenic mutations in FOXP1. These patients share

strikingly similar phenotypes, including mild to moderate

ID with severe language impairment, autism and /or

autistic features, mood lability with physical aggressive-

ness, and specific obsessions and compulsions. The

patients with FOXP1 disruption described herein do not

show verbal dyspraxia, but their phenotype nevertheless

overlaps with that of patients with FOXP2 disruption to

the extent that they also show language impairment.

Two other patients with de novo deletions encompassing

FOXP1 were recently described.26,27 These patients, who
ells transfected with pcDNA4-HisMax-based constructs expressing
s described in the text. Proteins were resolved on SDS-PAGE, and
nal antibody against the N-terminal Xpress tag (Invitrogen). The
bcam) as an internal loading control.
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Table 1. Clinical Phenotype of the Patients with De Novo FOXP1
Mutations

Patient A
(R0031608)

Patient B
(R0024121)

FOXP1 de novo mutation del (exons 4–14) c.1573C>T
(p.R525X)

Age (yrs: mo) / sex 15:11 / F 9:11 / M

ADI-R / ADOS-G �/� þ/þ

Leiter International Performance Scale-R

BRIEF IQ: standard score
(percentile)

58 (0.3) 48 (0.1)

Pre-school Language Scale: Age Equivalent (Yrs: Mo)

Auditory comprehension ND 3:7

Expressive communication ND 1:11

Total language score ND 2:7

Clinical Evaluation of Language Fundamentals:
Age Equivalent (Yrs:Mo)

Expressive subtests

Morphology < 4:0 ND

Recalling sentences < 4:0 ND

Expressive vocabulary < 4:5 ND

Receptive subtests

Concepts and following
directions

4:3 ND

Basic concepts > 4:0 ND

Sentence structure < 4:0 ND

Vineland Adaptive Behavior Scales: Percentile Rank

Communication 1 < 1

Daily living 2 < 1

Socialization < 1 1

Adaptive behavior
composite

1 < 1

Internalizing behavioral
abnormalities

clinically significanta ND

Externalizing behavioral
abnormalities

clinically significanta ND

Maladaptive behavior index clinically significanta ND

Aberrant Behavior Checklist: Raw Score (SD above Normal
Mean)b

Irritability subscale 26 (2.3) 31 (2.9)

Lethargy subscale 19 (1.7) 8 (0.2)

Stereotypy subscale 7 (1.6) 14 (2.9)

Hyperactivity subscale 24 (1.6) 42 (2.6)

Inappropriate speech
subscale

6 (1.6) 6 (1.5)

Repetitive Behavior Scale-Revised: Raw Scoresc

Stereotyped behavior 3 7

Self-injurious behavior 1 16

Table 1. Continued

Patient A
(R0031608)

Patient B
(R0024121)

Compulsive behavior 3 6

Ritualistic behavior 6 6

Sameness behavior 6 11

Restricted behavior 4 10

Other Tests

Fragile X testing negative negative

AGH del FOXP1 (exons 4–14) normal

CT scan normal ND

ND, not determined; AGH, array genomic hybridization. Affymetrix SNP arrays
(5.0 or 6.0) were used for AGH.
a Clinically significant behavior problems on these scales correspond to the
extreme top 2% of children of the same age.
b Clinically elevated: 1.5–1.9 SDs, significantly elevated: R 2.0 SDs, where
reported SDs are standard deviations from the normative ABC mean (commu-
nity versus score).33
c All subscale scores correspond to significant case identification, except for the
‘‘self-injurious behavior’’ for patient A, as previously outlined.34
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were less than 4 yrs of age when studied, showed develop-

mental and speech delay, but formal cognitive or behav-

ioral evaluation could not be performed. In one case, the

deletion spans 750 kb and affects three other genes

whereas in the other case, the deletion spans 1 Mb and

extends over 500 kb on the 30 end of FOXP1. Even though

this latter deletion does not affect any other known genes,

the possibility that it encompasses elements that are

important for the expression of genes located in its vicinity

cannot be ruled out. Nevertheless, these cases reinforce our

conclusion that FOXP1 haploinsufficiency affects cogni-

tive development. Although an association between viti-

ligo (MIM 193200), an autoimmune form of skin depig-

mentation, and an intronic variant in FOXP1 was

recently reported,28 none of our patients displayed signs

of such a condition.

Although FOXP1 and FOXP2 can cooperate to regulate

transcription and are both associated with language

impairment, FOXP1 disruption appears to have a more

global impact on brain development than FOXP2 disrup-

tion. The difference between the phenotypic consequence

of FOXP1 and FOXP2 haploinsufficiency might be ex-

plained at least in part by some difference in their expres-

sion patterns.7,9 Alternatively, FOXP heterodimers and

homodimers may have different biochemical properties.

For instance, FOXP1-FOXP2 heterodimers may regulate

targets that are involved in language impairment, whereas

the respective FOXP homodimers may regulate additional

targets that are associated with other developmental

processes. Vernes et al. have found that FOXP2 directly

regulates the expression of CNTNAP2, a gene that encodes

a member of the neurexin superfamily of transmembrane

proteins implicated in neuronal recognition and cell adhe-

sion.29 CNTNAP2 has been associated with language
er 12, 2010



impairment and autism.29–32 It is tempting to speculate

that FOXP1 homodimers or FOXP1-FOXP2 heterodimers

also regulate CNTNAP2 expression and that FOXP1 hap-

loinsufficiency affects language development and possibly

causes ID and autism by disrupting this regulatory interac-

tion. FOXP1 and FOXP2 thus represent interesting entry

points for dissecting the molecular mechanisms under-

lying neurodevelopmental disorders such as ID, autism,

and language impairment.
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